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Abstract. A quantum detector moves in a circle of radius r, within a concentric circular cavity
of radius R, with constant angular velocity £2, A quantum field, enclosed in that two-dimensional
cavity, is in its ground state. We compute the probability that the detector will be excited by

* the vacuum fluctuations of the field. If R < ¢/, the detector is not excited. For latger R the
excitation rate is a chaotic function of £ and a multiply periodic Function of the observation
time . However, for R 3 ct > r the excitation rate tends to a finite limit, independent of R
and 1.

1. Introduction

It is well known that a quantum detector moving with a constant acceleration in a Minkowski
vacuum reacts as if it were in a thermal bath [1,2]. This is called the Unruh effect. It results
from the autocorrefation of the field variables along the world line of the detector. The
vacuum fluctuations appear to have a Planckian spectrum, with a temperature kT = gh/2nc.

For any reasonable linear acceleration this temperature is exceedingly low. Yet Bell

-et al [3-5] attempted to verify this effect and performed extensive calculations on the
quantum fluctuations of electron orbits in high-energy storage rings, where the centripetal
acceleration is much higher than the one obtainable in a linear accelerator. They found
that circular motion led to a similar effect, and discussed possible observable consequences.
More recently, Rogers [6] proposed observing this effect by using a single electron revolving
in a Penning trap. Other authors [7,8] investigated the behaviour of rotating quantum
detectors by using rotating coordinate systems, with contradictory results.

None of these authors took into consideration the fact that the properties of a quantum
field in a closed cavity (such as a storage ring or a Penning trap) are radically different from
those of a free field in unbounded space. The presence of boundaries affects the dynamical
properties of a quantum field by altering the frequencies of its normal modes. Finite size
effects have been known for a long time, both theoretically [9] and experimentally [10]. In
this paper we show that the effects of a finite cavity size cannot be ignored, uniess that size
is much larger than ct, where ¢ is the duration of the circular motion. This condition is not
satisfied in the experiments discussed by Bell et af, and by Rogers.

We investigate this issue by means of a simple theoretical model involving a massless
scalar field ¢ enclosed in a two-dimensional circular cavity of radlus R. In spite of these
radical simplifications (no third space dimension and no polarization) the calculations are
fairly complex, because they involve six different parameters with the dimension of length:
the orbit radius r, the cavity radius R, the wavelengthi for transitions between levels of the
detector, the Compton wavelength of the detector, and (apart from a factor ¢) the observation
time ¢ and the period of revolution 27/ 2. This gives five independent dimensionless ratios.
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With reasonable values for the physical parameters, some of these dimensionless ratios are
very large, and among them some may be very much larger than others. These widely
different orders of magnitude will allow us to make various approx:matlons and to obtain
a closed expression for the transition rate.

Section 2 of this paper discusses properties of a two-dimensional scalar field enclosed
in a circular cavity, and ends with an explicit expression for the Wightman function.
Section 3 is a general treatment of transitions between discrete levels, induced by a periodic
perturbation. Section 4 specifically deals with the detection of vacuum fluctuations. It is
shown that the transition rate strongly depends on the cavity radius R, unless R 3> ct.

2. Scalar field in a circular cavity

We take as the free field Lagrangian density E¢ =3z  [c®g? — (V¢)?], which gives the equal
time commutation relation

[¢ ('f', t)! é(.rf’ t)] = ihcza(r - ,’.f) (1)

and the field equation ¢ = ¢2V2p. We shall assume that ¢ = 0 at the cavity’s boundary,
irl = R. There is an apparent contradiction between this condition and equation (1). The
difficulty originates in the expansion of ¢ into normal modes

$lr.H) = e f,(r)a, +he. )
W
where each mode f,(7) satisfies V2 +(w/c)’¢ = 0. In polar coordinates, r, 8, these modes
are f,(r) ~ ™ I, (wr/c), and the boundary condition ¢ (R, 8) = 0 is satisfied by taking

CZms ) ) i i i
0= ®

where z,; is the sth zero of the Bessel function Jn(z). The eigenfunctions f,(r) are
mutually orthogonal and may be normalized by f fa) fu(r)dr = é,.y. Since they form
a complete set, they also satisfy

D) folr') = 8(r —1'). ' @)

It is clear from equation (4) that a sum over modes can converge only in a distribution
sense. This is also true for the sum in equation (2), and this explains the contradiction
between equation (1) and the boundary condition ¢{R,#) = 0. One way of overcomting
this difficulty is to impose an arbitrary high frequency cutoff on the sum over modes. We
would then have, instead of 8(r — ), a rapidly oscillating function of r and v, with a
sharp peak at r = 7/, and the relativistic invariance would be impaired [11]. This is quite
admissible, since the cavity’s rest frame is a privileged frame in our problem. A fully
relativistic treatment would thus have to describe the cavity itself as a dynamical system:
instead of a formal boundary condition there would be a strongly repulsive interaction
between the cavity walls and the field. We shall henceforth ignore these fine points—which
are inherent in quantum field theory—because they are unlikely to affect the main results
of our calculations.
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Explicitly, the normalized modes are

g Im(Zmst /R)
: 9 — ime mi&sms (5
IO = T R I e )
where a double index ms replaces the original index . The creation and annihilation
operators of mode ms are normalized by :

hc? _
‘ [ams's a;rnlsl] = 5mm: 835-' — - : i (6)

26055

so that the commutation relation (1) is satisfied.
We shall later need explicitly the vacuum expectation value (Wightman function)
{Olp (', 1) @ (r, £)|0).. It can be obtained from the preceding equations

‘A
Qb ) p(r, Df0) =1 Y g0 LLLL® ™
- 20
In the special case of our circular cavity this becomes
016 (-9'0) BGronI0) = e - " im0 3¢ t=emns/ R (8)
2R m=—00 s "

where

Cs = I st [ R) Jin (Zms? | R) 9)

Zins [J,;.(zms)lz

3. Transitions between discrete levels

We now turn our attention to the detecting process. The detector has discrete energy levels,
and its interaction with the quantized field ¢ causes transitions between them. To determine
the transition rate one cannot use the familiar Fermi golden rule, since the latter is valid
only when there is a continuum of final states, and is not applicable to transitions between
discrete levels, We therefore proceed as in our previous paper (Levin et af [12]) and repeat
here only the main points of the argument given there, discussing only changes that are
necessary for the present problem.

Consider in general two weakly coupled quantum systems, such as an ‘atom’ a (our
detector) and a ‘background’ b, which may be a quantized field or any other agent whose
.interaction with the atom causes quantum tramsitions. In the absence of coupling the
Hamiltonian is Hy = H, + H,. We assume that H, is time-independent and has a discrete
spectrum: H, |m) = E,, |m). No such assumptions are made for H, which may explicitly
depend on time. The states of the background are described by an arbitrary orthonormal
basis |a), and those of the combined system by the tensor product of these two bases

ma) = m® o). 10)
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The coupling between the two systems is assumed to be a direct product A @ B, where
the operators A and B belong to the atom and the background, respectively. The Schrddinger
equation is

A Y Y (1)

where v is a linear combination of the basis vectors (10). The ® sign will henceforth be
omitted. The operators A and B were naturally written in equation (11) in their Schrddinger
representation. We shall later also need the Heisenberg representation of B, which is

Bu(t) =U' ) BOYU®) (12)
where U(t) is a unitary operator satisfying it dU () /dt = Hj, U{¢), with the initial condition

U@y = 1.
We now expand

YO =UE) Y e B 0 (2) ma) (13)
where
ma(t) = 5 (ma | U (1) [y (D). (14}

The Schridinger equation (11) is equivalent to

. dfma(t) H -
i e =§ewm R A (@ Bu(D1B) Crp (15)

where Ap, = {mlAln}. The initial state of the combined system is given by equation (13)
with ¢;p(0) = 1, and all other ¢y, (0) = 0. Here the index O refers to the initial state of
the background subsystem. That state will be denoted by [0). It may be the vacuum or any
other state resulting from the physical preparation of that background. We are interested in
the probability of finding the atom in a prescribed final state | £}, at time ¢, irrespective of
the final state of the background. That probability is P(r) = 3, Iy ()%, and the transition
rate is

dP (1)

') = —— =;§ ) d%@- + e (16)

For the given initial conditions, and for any | f} orthogonal to the initial state of the
atom, equation {15) becomes, in first order perturbation theary,

dcfar (t) .

i
s

e Agy (@] Bu(1)|0) (17)

where @ = (Ef — E;) /. 1t follows that

t
i cpult) = A f & (e Bys () [0) 07 (18)

to
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and therefore
- !
T'(t) = |Ap /R f 01N 0| Bu(r) e} (| By()|0} dt’ + c.c.
0 =
H
= |Ag, fR|? f =1 (0] By (¢") Bu(£)|0) dt’ +c.c.. (19)
\]

This result is valid as long as Zf Pt} <« 1. For longer times, first order perturbation
theory becomes inadequate.
In a stationary situation, such as the one that we are considering,

W(¢', t) = (0] Bu(') Bu(1)|0) ) 20
depends only on the time difference ¢t — ¢’ and can be written as
WE. =W —t)y=W¢ -1, . @

Introducing a new integration variable T =t — t’, we finally obtain
t -
T = lAp/nf f e'“T W(z)dr + c.c.
0

. , :
= |Asi/hI? f ewt=" dg, (22)
-t

4. Quantum detector in circular motion

We now introduce the detector, which we take as a point particle having two internal states
(its internal structure will be described with notations appropriate to a spin~% pariicle). A
fully relativistic treatment of the detector inferacting with the scalar field ¢ would necessitate
describing it, too, by a quantized field. However, as shown in our previous paper {12], if
the detector is massive enough to remain localised in a wave packet which is very small
compared to the size of the cavity, and if we can neglect the creation of virtual pairs of
detectors and antidetectors, it is an excellent approximation to treat classically the position
of the detector, and to assume that it follows a prescribed trajectory r = r(2).

In that case the only dynamical variables in the Hamiltonian are the quantlzed scalar
field ¢ and the internal degrees of freedom of the detector. In order to use the results of
the preceding section, we have to write the Hamiltonian in the Schridinger representation.
In the simplified model that we are considering, it is

H=Hs +wS, +ArS: @, 1) , (23)

where ¢ is the Schroddinger representation of the scalar field (the symbol ¢ that was used
in' section 2 was its Heisenberg representation, namely ¢ = ®y); the detector’s internal
variables S, and S. are the usual spin matrices (eigenvalues +%/2); w is a constant, such
that #w is the energy separation of the two levels of the detector, and A is the detector’s
coupling constant to the scalar field. This coupling causes transitions between the intemnal
levels of the detector. The occurrence of a transition may be interpreted as the detection of
2 vacuum fluctuation of the field.
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We can now use the results of the preceding section to evaluate the transition rate,
T'(t), between the two levels of the detector. The symbols H; and H} that were used in
that section correspond to S, and Hg, respectively. As a simple example, we consider
uniform circular motion: r = const, & = 2.

In equation (19), we set

|Afil = (A8, = Ja22 (24)

and we take for W(¢', #) the Wightman function given in equation (8) evaluated at a pair
of points on the detector’s trajectory. Explicitly, it is

O CEH) SO0 = 5 T Cpy D=l 25)

where C,,, is defined by equation (9), with +* = r. Combining equations (20), (22) and
(25), we obtain

lZ . 7
r) = ot Zcms f frio—mcsn/B 4. (26)

-t

If we now take the limit ¢ — oo as is customary, the above integral becomes
278(w — m& + ez /R), and it is obvious that the only values of m that are involved
satisfy m > w/S2. For positive m, all the zeros of J,(z) satisfy z,s > m [13]. It follows
that the argument of the delta function cannot vanish if 2 < ¢/R, and therefore in that case
=0

The absence of transitions if € < ¢/R could have been foreseen as follows: A
transformation to a rotating coordinate system (8o = 8 — Q) is everywhere regular up
to a radius ¢/ (at that radius, g, = c> — 2%r? changes sign), Thus, by using a rotating
coordinate system in a cavity whose radius is smailer than ¢/ 2, the detector appears to be
static, and the spacetime metric itself is stationary. Since this transformation does not mix
the modes of the field, a vacuum with no mode excited remains 2 vacuum, and therefore the
static detector cannot be excited. The same conclusion is obviously valid for any axially
symmetric three-dimensional cavity, whose largest radius is less than ¢/ €.

For R > ¢{Q the situation becomes more complicated. If we interpret the delta function
literally, T is strictly zero for nearly all values of the parameters, and it is infinite at some
isolated points. This manifestly contradicts the conditions for validity of perturbation theory.
We must therefore consider the situation for finite values of r. We then have

A28
@) = —“ Cos M @7
where
@ =w— m9+cz£". ©8)

The sum (27) is illustrated in figure 1, where grey stripes indicate the regions in which
|sinta/te} > 0.1. Further stripes, corresponding to larger values of the denominator
«, yield gradually decreasing contributions fo the sum (27). For consecutive stripes
Am = x/Qt, which is a very small number if the detector performs many revolutions
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m . . . .

101
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Figure 1. The sum in equation (27) involves all the points of the lattice where z = zy;, but
only those lying on the grey stripes give a substantial contribution. For reasonable physical
patamneters, m is very large, the stripes are considerably narrower than sketched here, and their
actual slope, ¢/ QR, may be much smaller than in this figure, The values of z,,s actually used
for this figure were computed by means of the approximate formula (A3) for m = 1 to 20. The

errors, with respect to the known exact values of 2., are smaller than the size of the dots. ’

during the observation time ¢. The actual stripes are therefore much narrower than those
sketched in the figure. Their slope is ¢/ Q R, and their horizontal extent is Az = w R/ct. On
the other hand, the distance between consecutive values of z,,; (for given m) is always more
than 7 (see appendix). Therefore the phases of consecutive terms in the sum (27) differ
by r Ae Z mct/R, and different regimes must be distinguished, depending on whether the
ratio R/ct is large or small (for intermediate values there is a continuous transition between
the two extreme behaviours which cannot be described in any simple way).

If R < ct, the various sinfe¢ act incoherently and the sum (27) is a multiply periodic
function of time. However, there are exceptional values of R for which one of the zp,
yields a very small value of a and the corresponding Cp;/c dominaies the entire sum.
The contribution of such a term is a periodic function of ¢, with a period 27ra~! and an
amplitude ~ «~!. Both are rapidly varying functions of R. As seen in figure 1, there is
an infinite number of these exceptional points for which o is very small. However, the
coefficient C,; itself is large only in a narrow domain of values of m (as explained below).
Therefore, the values of R for which I'(¢) is large are sparse and ‘randomly’ distributed. {(If
we had a three-dimensional cavity with height comparable to the radius R the result would
be qualitatively similar, because the field would still have a discrete spectrum, with level -
separations of the same order of magnitude. However, for a very long cylindrical cavity,
with height much larger than cz, the results are likely to be smooth functlons as in the case
R >» ct which is discussed below.)

If R > ct, there are for each m many consecutive roots z,, swept by the grey stripes
in figure 1. The phases of consecutive terms of the sum differ by ~mct/R <« 1, so that
these terms act coherently. Moreover, the coefficients Cp;. which are given by equation
(%), depend on z,; in a very smooth way, as can be seen from the formulae given in the
appendix. Therefore the sum (27) contains only contributions from terms in which te is
not a large number, because of the mutually cancelling osciliations of sinta that occur for
larger values of o.

‘We then have



3008 O Levin et al

Fon(Zms 1/ R) = T [(m& — w + @) r/c] 22 Jp[(m&2 — w)rfc]. (29)
‘The error in the argument of J,; on the right-hand side of this equation is ar/c = (ta) (r/ct).
This is much smaller than the distance of consecutive zeros, Azy; = m, because fa cannot
be large, as explained above, while r/cz is a small number if the duration of the process

extends over many periods of revolution. We can therefore write Ly, which is defined by
equation (9), as

Cos = Unlim2 — apr/cl? 222 (30)

where use was made of equation (A7) in the appendix. The JZ term in Cp; no longer
depends on the index s and we can now perform explicitly the sum over s in (27)

. . .
Eﬂzm sin for 2[ dz sinte =§ 7 31)
5 i =

o = o

where the limits of integration have been extended to -too because of the sharp peak in the
integrand. Note that the approximation in equation (31) is justified only if sinfe changes
slowly for consecutive s, which indeed is true if R >> ct, but not if R < ct.

Let us introduce the notations £ = Qr/c < 1 (this is the dimensionless velocity of the
detector) and u = w/$2 (this is a very large number, if @ is a typical atomic frequency
while £ cannot exceed ¢/r). We have

Iml(m&2 — w)r/cl = JnlmB (1 — u/m)]. (32)
Recall that m > p, as can be seen from equation (29). We further define a variable § by
seché = (1 — p/m) (33

and use the asymptotic formula [13]

e—2m(E—tanh &)

i [ (m sech £)]? =~ {34)

2rmtanhE

It will now be shown that this expression is sharply peaked in a narrow domain of values
of m, This will allow us to expand the exponent on the right-hand side of equation (34)

into a power series around its maximum, and to keep only two terms of this series.
From equation (33), we have,

d o
im Im (& —tanh&)] =& — Bsinh&. (35)

The exponent is therefore maximum when § = £ sinh§, an equation that can be solved
numerically to obtain the function £(8). A simple algorithm is to iterate & = sinh™! (§/8) =
log{(¢/8) + [(5/8)* + 112}, which converges very rapidly unless § is close to 1.

The value of m for which § = g sinh & is, by virtue of equation (33),

___H
(¢ —tanh§)

mo (36)
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The value of the second derivative at the point m = my is

e £(8) '
~— [m(§ —tanh§)] = —= . 37
oz [m (& 8] " 3N

where

] (tcothg —1)3
r(gy = Soms 7 (38)
3
A few typical values are listed below:

B == 0.01 0.1 0.5 09 0.99 1—e

E= 7.2340 4.4999 2.1773 . 0.8034 0.2458 e

A = 1.1591 1.2856 1.8104 58439  50.854 1/2¢

(= 34.068 9.5363 0.8630, 00110 3x107% (6} 27.

The quadratic term in the exponent of (34) is —¢ (m — mg)*/ 1L, so that the peak has
a width of order ,/zi, while myp is of order u. (These estimates are no longer valid if
€ =1—8 < p~%5, which is a very small number. We shall not discuss here these extreme
conditions). In the next term of the expansion, the third derivative is of order 1%, and when
multiplied by (m —mg)® ~ p>/ it gives a result of order 4~'/2, which can be neglected. We
can therefore stop the power expansion at the quadratic term, and we obtain, from equations
(273, (31) and (34},

32, e~ 2mo(§—tach§)

() = }"Z_h J? ~ dm ~¢{m—mo)l/u (39)
() 5 Z ol e .

47 myg tanh £

Because of the sharp peak, the limits of integration can be extended to =00, and the integral
is (/&2 Note that I'(¢) no longer depends on ¢, provided that r < ct < R.
After some rearrangement, we finally get

tanh &

— 192y —2ut
=22 he™ | e —anng) -

(40)

This result depends on p = /€2, and on £(8). The dependence on © = w/Q is mostly
due to the factor e 2 = ¢ 25622 where E = hw is the energy difference between the
two levels of the detector. This exponent is similar to the one in a Boltzmann distribution
at a temperature kT = RS2 /2. The latter can be considered as a kind of Unruh temperature
for circular motion, in the present mode! (scalar field in 1+2 spacetime dimensions). The
corresponding wavelength is of the order of c&/§ = r&/B. This is much less than R (if
R 3> ct) so that thermal equilibrium may be reached within a time ¢ if the coupling constant
2 is large enough. ‘

We have checked that the result equation (40), which is asymptotically valid for large R,
can also be obtained (with much less labour!) by considering circular motion in an infinite
plane, and using the Wightman function for a free field in that plane. We have also checked
that, with our choice for the order of magnitude of physical parameters, our conclusions
are independent of the boundary condition ¢ = (. They are also valid for the more general
condition a¢ + bdg/dr =0.
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Appendix. Approximate formulae for Bessel functions

Although the asymptotic properties of Bessel functions are well documented, readily
available formulae are not explicit enough for our problem. We briefly derive here the
formulae that were needed in this work. Equations labelled (9.%.%) refer to the tables of
Abramowitz and Stegun [13]. We neglect in the latter all corrections of crder m~!, since
m > w/§ always is a very large number.

First, we note from (9.5.14) that z,,; =~ m -+ 1.85575 m"/>. Therefore all zeros of J{(x)
are larger than m. Asymptotic properties of higher zeros can be obtained as follows. From
(9.3.3) and (9.3.19) we have ’

- . . .
Julm secn) = _| - cos [m (tann — 5) — /4] (AD

sin2n

Jo(m secn) = —

sin [m (tann — n) — = /4], (A2)
The sth zero of J,;(x) occurs for a value of n given by

m(tang —n) —w/4=sm -2 . (A3)
and its value is z,;; = m secn. At each zero, the sine in equation (A2) is =1, and therefore

, sin
Zns [ Gms) 2 = 27"’ - (A%)

where n is given by equation (A3). The explicit value of » can be ohtained by iterating
n =tan~! [5 + & (s — 0.25)/m], which converges very rapidly.
Consecutive zeros (for given m) satisfy

7 =mA(tann — 7)) = m tan’n An. ) (A3)

The justification of the last step is that An is a very small number, since m is large.
Therefore consecutive values of z,,, satisfy

Az,,,s=mAsecr,=-s-i%. f (A6)
It follows that for any s, large or small, the denominator of Cp, in equation (9) is
. ) ‘
Zms

a remarkably simple formula which is crucial in our work.

Although we expected these formulae to be correct only to order m~!, we found that
they are excellent approximations even for J;(x). For example, we obtain z;; = 3.7944
versus the correct value 3.8317. For larger s the agreement is even better.

Zms [J,;; (zms)]z =

(AT)
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