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Unruh effect for circular motion in a cavity 
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Department of Physics, Technion-Israel Institute of Technology, 32wO Haifa. Israel 

Received 17 A u w t  1992 

Abstract A quanNm detector moves in a circle of radius r. within a concennic cucular cavity 
of radius R, with constant angular velocity s2. A quantum field, enclosed in that two-dimensional 
cavity, is in its p u n d  state. We compute the probability that the detector will be excited by 

' the vacuum fluctuations of the field. If R c cjs2, the detector is not excited. For larger R h e  
excitation rate is a chaotic function of R and a multiply periodic function of the observation 
time 1. However, for R >> ct >> r the excitation rate tends to a finite limit, independent of R 
and 1. 

1. Introduction 

It is well known that a quantum detector moving with a constant acceleration in a Minkowski 
vacuum reacts as if it were in a thermal bath [ 1,2]. This is called the Unruh effect. It results 
from the autocorrelation of the field variables along the world line of the detector. The 
vacuum fluctuations appear to have a Planckian spectrum, with a temperature kT = gfr/2nc. 

For any reasonable linear acceleration this temperature is exceedingly low. Yet Bell 
et a1 [3-5] attempted to verify this effect and performed extensive calculations on the 
quantum fluctuations of electron orbits in high-energy storage rings, where the cenhipetal 
acceleration is much higher than the one obtainable in a linear accelerator. They found 
that circular motion led to a similar effect, and discussed possible observable consequences. 
More recently, Rogers [6] proposed observing this effect by using a single electron revolving 
in a Penning trap. Other authors [7,8] investigated the behaviour of rotating quantum 
detectors by using rotating coordinate systems, with contradictory results. 

None of these authors took into consideration the fact that the properties of a quantum 
field in a closed cavity (such as a storage ring or a Penning trap) are radically different from 
those of a free field in unbounded space. The presence of boundaries affects the dynamical 
properties of a quhtum field by altering the.frequencies of its normal modes. Finite size 
effects have been known for a long time, both theoretically [9] and experimentally [lo]. In 
this paper we show that the effects of a finite cavit); size cannot be ignored, unless that size 
is much larger than- cr, where r is the duration of the circular motion. This condition is not 
satisfied in the experiments discussed by Bell et al, and by  Rogers. 

We investigate this issue by means of a simple theoretical model involving a massless 
scalar field q5 enclosed in a two-dimensional circular cavity of qadi,us R. spite of these 
radical simplifications (no third space dimension and no polarization) the calculations ik 
fairly complex, because they involve six different parameters with the dimension of length: 
the orbit radius r ,  the cavity radius R, the wavelength for transitions between levels of the 
detector, the Compton wavelength of the detector, and (apart froma factor c) the observation 
time f and the period of revolution 2nlS-2. This gives five independent dimensionless ratios. 
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With reasonable values for the physical parameters, some of these dimensionless ratios are 
very large, and among them some may be very much larger than others. These widely 
different orders of magnitude will allow us to make various approximations and to obtain 
a closed expression for the transition rate. 

Section 2 of this paper discusses properties of a two-dimensional scalar field enclosed 
in a circular cavity, and ends with an explicit expression for the Wightman function. 
Section 3 is a general treatment of transitions between discrete levels, induced by a periodic 
perturbation. Section 4 specifically deals with the detection of vacuum fluctuations. It is 
shown that the transition rate strongly depends on the cavity radius R ,  unless R >> ct. 

2. Scalar field in a circular cavity 

We take as the free field Lagrangian density .C, = 
time commutation relation 

[2dZ - (V@)*], which gives the equal 

[@(T, t ) .  d(T', t )]  = i)iCZS(T - T') (1) 

and the field equation 4 = czV2@. We shall assume that @ = 0 at the cavity's boundary, 
I T I  = R. There is an apparent contradiction between this condition and equation (1). The 
difficulty originates in the expansion of @ into normal modes 

@(P, t )  = e-'W' a, + h.c. (2) 
w 

where each mode f w ( ~ )  satisfies Vz@+(o/c)2@ = 0. In polar coordinates, r, 8, these modes 
are f&-) - e',' J,(wr/c), and the boundary condition @ ( R ,  0) = 0 is satisfied by taking 

where z,,,, is the sth zero of the Bessel function Jlml(z). The eigenfunctions fU(r) are 
mutually orthogonal and may be normalized by 1 f:(~) fd(r)  dP = S d .  Since they form 
a complete set, they also satisfy 

It is clear from equation (4) that a sum over modes can converge only in a distribution 
sense. This is also true for the sum in equation (2). and this explains the contradiction 
between equation (1) and the boundary condition @ ( R ,  6') = 0. One way of overcoming 
this difficulty is to impose an arbitrary high frequency cutoff on the sum over modes., We 
would then have, instead of S(T  - T'), a rapidly oscillating function of r and P', with a 
sharp peak at T = P', and the relativistic invariance would be impaired [ I l l .  This is quite 
admissible, since the cavity's rest frame is a privileged frame in our problem. A fully 
relativistic treatment would thus have to describe the cavity itself as a dynamical system: 
instead of a formal boundary condition there would be a strongly repulsive interaction 
between the cavity walls and the field. We shall henceforth ignore these fine points-which 
are inherent in quantum field theory-because they are unlikely to affect the main results 
of our calculations. 
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Explicitly, the normalized modes are ~ 

where a doubte index ms replaces the original index 0.~ The creation and annihilation 
operators of mode ms are normalized by 

so that the commutation relation ( I )  is satisfied. 

(Ol@(r', t ')@(?-,  t)lO)., It c& be obtained from the preceding equations 
We shall later need explicitly the vacuum expectation value (Wight" function) 

In the special case of our circular cavity this becomes 

where 

~, , 

3. Transitions between discrete levels 

We now tum our attention to the detecting  process.^ The detector has discrete energy levels,. 
and its interaction with the quantized field @ causes transitions between them. To determine 
the transition rate one cannot use the familiar Fermi golden rule, since the latter is valid 
only when there is a continuum of final states, and is not applicable to transitions between 
discrete levels. We therefore proceed as in our previous paper (Levin et ai [12]) and repeat 
here only the main points of the argument given there, discussing only changes that are. 
necessary for the present problem. 

Consider in general two weakly coupled quantum systems, such as an 'atom' a (our 
detector) and a 'background' h, which may be a quantized field or any other agent whose 
 interaction with the atom causes quantum transitions. In the absence of coupling the 
Hamiltonian is HO = Ha + Hh. We assume that H. is time-independent and has a discrete 
spectrum: Ha Im) = E,  Im). No such assumptions are made for Hb which may explicitly 
depend on time. The states of the background are described by an arbitrary orthonormal 
basis la), and those of the combined system by the tensor product of these two bases 

thy) E Im) 8 la). (10) 
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The coupling between the two systems is assumed to be a direct product A @ E ,  where 
the operators A and B belong to the atom and the background, respectively. The Schrodinger 
equation is 

where $ is a linear combination of the basis vectors (10). The @ sign will henceforth be 
omitted. The operators A and B were. naturally written in equation (1 1) in their SchrMinger 
representation. We shall later also need the Heisenberg representation of B ,  which is 

= Ut@) B ( t )  U(t)  (12) 

where U ( f )  is a unitary operator satisfying 2 dU(t)/dt = Hb U@), with the initial condition 
U ( 0 )  = 1. 

We now expand 

where 

The Schriidinger equation (11) is equivalent to 

where A,. = (mlAln). The initial state of the combined system is given by equation (13) 
with qo(0) = I ,  and all other c,,,,(O) = 0. Here the index 0 refers to @e initial state of 
the background subsystem. That state will be denoted by IO). It may be the vacuum or any 
other state resulting from the physical preparation of that background. We are interested in 
the probability of finding the atom in a prescribed final state I f ) ,  at time t ,  irrespective of 
the final state of the background. That probability is P ( t )  = E, Icfa(t)lz, and the transition 
rate is 

For the given initial conditions, and for any If) orthogonal to the initial state of the 
atom, equation (15) becomes, in first order perturbation theory, 

where w = ( E f  - Ei) /h .  It follows that 
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and therefore 

r(t)~= eimcr-f') x ( O [ B H ( t ' ) [ a )  ( a ] B ~ ( t ) l O )  dt'+c.c. 
0 U 

= l ~ ~ , / f i l z ~ ' e i ~ ~ ' - ~ ' )  ( ~ I B ~ ( t ' ) B ~ ( t ) l ~ ) d t ' + c . c . .  (19) 

This result is valid as long as Er P ( t )  << 1. For longer times, first order perturbation 
theory becomes inadequate. 

In a stationary situation, such as the one that we are considering, 

WO', t )  = (OIBH(~')BH(W (20) 

depends only on the time difference t - t' and can be written as 

W(t', t ) ~  = W ( t  - t') = W * ( t  - t ) .  (21) 

Introducing a new integration variable 5 = t - f', we finally obtain 

4. Quantum detector in circular motion 

We now introduce the detector, which we take as a point particle having two intemal states 
(its intemal structure will be described~with notations appropriate to a spin-; particle). A 
fully relativistic treatment of the detector interacting with the scalar field q5 would necessitate 
describing it, too, by a quantized field. However, as shown in our previous paper [12], if 
the detector is massive enough to remain localised in a wave packet which is very small 
compared to the size of the cavity, and if we can neglect the creation of virtual pairs of 
detectors and antidetectors, it is an excellent approximation to treat classically the position 
of the detector, and to assume that it follows a prescribed trajectory T = ~ ( t ) .  

In that case the only dynamical variables in the Hamiltonian are the quantized scalar 
field q5 and the intemal degrees of freedom of the detector. In order to use the results of 
the preceding section, we have to write the Hamiltonian in the Schriidinger representation. 
In the simplified model that we are considering, it is 

H = He + w s, + A. s, @(T, t )  (23) 

where O is the Schradinger representation of the scalar field (the symbol q5 that was used 
in section 2 was its Heisenberg representation, namely q5 = OH): the detector's intemal 
variables S, and S, are the usual spin matrices (eigenvalues u l / Z ) ;  w is a constant, such 
that fiw is the energy separation of the two levels of the detector, and A. is the detector's 
coupling constant to the scalar field. This coupling causes transitions between the intemal 
levels of the detector. The occurrence of a transition may be interpreted as the detection of 
a vacuum fluctuation of the field. 
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We can now use the results of the preceding section to evaluate the transition rate, 
r(t), between the two levels of the detector. The symbols H, and Hb that were used in 
that section correspond to wS, and Hm. respectively. As a simple example, we consider 
uniform circular motion: r = const, 0 = Qt. 

In equation (19). we set 

(Afi\' =(AS,)' = $i2Az (24) 

and we take for W(t', t )  the Wightman function given in equation (8). evaluated at a pair 
of points on the detector's trajectory. Explicitly, it is 

where C,," is defined by equation (9), with r' = r. Combining equations (2.0). (22) and 
(Z), we obtain 

If we now take the limit t + CO as is customary, the above integral becomes 
k 6 ( w  - mi2 + czm,/R),  and it is obvious that the only values of m that are involved 
satisfy m > o/Q. For positive m, all the zeros of &(z) satisfy z,, > m 1131. It follows 
that the argument of the delta function cannot vanish if Q < cJR,  and therefore in that case 

The absence of transitions if Q < c / R  could have been foreseen as follows: A 
transformation to a rotating coordinate system (emt = 8 - Qt) is everywhere regular up 
to a radius c/Q (at that radius, g,, = c2 - Q2r2 changes sign). Thus, by using a rotating 
coordinate system  in a cavity whose radius is smaller than c / Q ,  the detector appears to be 
static, and the spacetime metric itself is stationary. Since this transformation does not mix 
the modes of the field, a vacuum with no mode excited remains a vacuum, and therefore the 
static detector cannot be excited. The same conclusion is obviously valid for any axially 
symmetric three-dimensional cavity, whose largest radius is less than c / Q .  

For R > c /  Q the situation becomes more complicated. If we interpret the delta function 
literally, r .is strictly zero for nearly all values of the parameters, and it is infinite at some 
isolated points. This manifestly contradicts the conditions for validity of perturbation theory. 
We 'must therefore consider the situation for finite values of t. We then have 

r = 0. 

where 

CZms 

R 
(Y = U  -mQ+ - 

The sum (27) is illustrated in figure 1, where grey stripes indicate the regions in which 
I sintcrltal z 0.1. Further stripes, corresponding to larger values of the denominator 
a, yield gradually decreasing contributions to the sum (27). For consecutive shipes 
Am */at, which is a very small number if the detector performs many revolutions 
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Figure 1. The sum in equation (27) involves all the points of the lattice where I = 4ar, but 
only those lying on the grey swipes give a substantial wnhibution. For reasonable physical 
parameters, m is very large, the stripes are considerably narrower than sketched here, and their 
%mal slope. cJnR, may be much smaller than in this figure. The values of zmr W l y  used 
for this figure were computed by means of Ihe approximate formula (A3) form = 1 to 20. The 
errors, with respect to the known exact values of znu, are smaller than the si= of the dots. 

during the observation time t .  The actual stripes are therefore much narrower than those 
sketched in thc.figure. Their slope is c/SlR,  and their horizontal extent is Ar = n R / c t .  On 
the other hand, the distance between consecutive values of z,, (for given m) is always more 
than H (see appendix). Therefore the phases of consecutive terms in the sum (27) differ 
by f Act 2 nct/R, and different regimes 'must be distinguished, depending on whether the 
ratio R/ct  is largc or small (for intermediate values there is a continuous transition between 
the two extreme behaviours which cannot be described in any simple way). 

If R 5 c t ,  the various sinra act incoherently and the sum (27) is a multiply periodic 
function of time. However, there are exceptional values of R for which one of the zmS 
yields a very small value of a and the corresponding C,Ja dominates the entire sum. 
The contribution of such a term is a periodic function of t ,  with a period 2nct-l and an 
amplitude -a-'. Both are rapidly varying functions of R. As seen in figure 1, there is 
an infinite number of these exceptional points for which (I is very small. However, the 
coefficient C,,? itself is large only in a narrow domain of values of m (as explained below). 
Therefore, the values of R for which r(t) is large are sparse and 'randomly' distributed. (If 
we had a three-dimensional cavity with height comparable to the radius R the result would 
be qualitatively similar, because the field would still have a discrete spectrum, with level 
separations of the same order of magnitude. However, for a very long cylindrical cavity, 
with height much larger than a, the results are likely to be smooth functions, as in the case 
R >> ct which is discussed below.) 

If R >> ct, there are for each m many consecutive roots zms swept by the grey stripes 
in figure 1. The phases of consecutive terms of the sum differ by -rcct/R << 1, so that 
these terms act coherently. Moreover, the coefficients C,,, which are given by equation 
(9), depend on z,, in a very smooth way, as can be seen from the formulae given in the 
appendix. Therefore the sum (27) contains only contributions from terms in which ta is 
not a largc number, because of the mutually cancelling oscillations of' sin ta that occur for 
larger values of 01. 

We then have 
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Jm(zmSr/R) = J , [ (mQ-w+a)r / c ] ' .  J,[(mQ-w)r/cl .  (29) 

The error in the argument of J ,  on the right-hand side of this equation is ar /c  = (ta) (rlct). 
This is much smaller than the distance of consecutive zeros, A Z , ~  2 z, because fa cannot 
be large, as explained above, while r/ct is a small number if the duration of the process 
extends over many periods of revolution. We can therefore write C,, , which is defined by 
equation (9), as 

(30) Azms 
Cms = {JmI(mQ - w)r/cl12 2 

where use was made of equation (A7) in the appendix. The .fi term in C,, no longer 
depends on the index s and we can now perform explicitly the sum overs in (27) 

where the limits of integration have been extended to &to3 because of the sharp peak in the 
integrand. Note that the approximation in equation (3 1) is justified only if sin ta changes 
slowly for consecutive s, which indeed is true if R >> ct, but not if R 5 ct. 

Let us introduce the notations p = Qr/c < 1 (this is the dimensionless velocity of the 
detector) and p = o/Q (this is a very large number, if w is a typical atomic frequency 
while $2 cannot exceed c / r ) .  We have 

Jm[(mQ - w)r/cI= Jm[mS (1 - p/m)l. (32) 

Recall that m > p, as can be seen from equation (29). We further define a variable 6 by 

sech = j3 (1 - p / m )  (33) 

and use the asymptotic formula 1131 

e-2m(E-rarh8 

2rrm tanh : ' [J,(m seche)]' 2: (34) 

It will now be shown that this expression is sharply peaked in a nanow domain of values 
of m. This will allow us to expand the exponent on the right-hand side of equation (34) 
into a power series around its maximum, and to keep only two terms of this series. 

From equation (33). we have. 

(35) 

The exponent is therefore maximum when e = ,!J sinhe, an equation that can be solved 
numerically to obtain the function e(,¶). A simple algorithm is to iterate: = sinh-' (e/,9) f 
log(({/,V) + [(e/@)' + 

d - [m(e  -tanhe)] = e  -psinh$. dm 

which converges veIy rapidly unless ,!J is close to 1. 
The value of m for which = p sinh 6 is, by virtue of equation (33). 
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The value of the second derivative at the point m = mo is 

where 

A few typical values are listed below: 

P =  0.01 0.1 0.5 0.9 0.99 1 --E 

e =  7.2840 4.4999 2.1773 . 0.8034 0.2458 & 
mo/H = 1.1591 1.2856 1.8104 5.8439 50.854 1/26 
< =  34.068 9.5363 0.8630~ 0.0110 3 x lo-' (&)''*/27. 

The quadratic term in the exponent of (34) is -( (m - mo)2/p,  so that the peak has 
a width of order &, while mo is of order p. (These estimates are no longer valid if 
E = 1 -6 5 p-2/5. which is a very small number. We shall not discuss here these extreme 
conditions). In the next term of the expansion, the third derivative is of order p-', and when 
multiplied by (m -moP - p3l2 it gives a result of order /i-1/2. which can be neglected We 
can therefore stop the power expansion at the quadratic term, and we obtain, from equations 
(271, (31) and (34), 

Because of the sharp peak, the limits of integration can be extended to *tm, and the integral 
is ( irp/() ' /2. Note that r(t) no longer depends on t ,  provided that r << c f  < R. 

After some reamangement, we finally get 

This result depends on p = o/a, and on &9). The dependence on p = o/C2 is mostly 
due to the factor eW2fi8 = e-*E8/nn, where E = fio is the energy difference between the 
two levels of the detector. This exponent is similar to the one in a Bolumann distribution 
at a temperature kT = hS2/2(. The latter can be considered as a kind of Unmh temperature 
for circular motion, in the present s model (scalar field in 1+2 spacetime dimensions). The 
corresponding wavelength is of the order of ce/S2 = rWp. This is much less than R (if 
R >> c t )  so that thermal equilibrium may be reached within a time f if the coupling constant 
A* is large enough. 

We have checked that the result equation (40). which is asymptotically valid for large R,  
can also be obtained (with much less labour!) by considering circular motion in an infinite 
plane, and using the Wight" function for a free field in that plane. We have also checked 
that, with our choice for the order of magnitude of physical parameters, our conclusions 
are independent of the boundary condition r$ = 0. They are also valid for the more general 
condition ~ r $  + b w/dr = 0. 
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Appendix. Approximate formulae for Bessel functions 

Although the asymptotic properties of Bessel functions are well documented, readily 
available formulae are not explicit enough for our problem. We briefly derive here the 
formulae that were needed in this work. Equations labelled (9.*.*) refer to the tables of 
Abramowitz and Stegun [13]. We neglect in the latter all corrections of order m-', since 
m w o/Q always is a very large number. 

First, we note from (9.5.14) that zml N m + 1.85575m'/3. Therefore all zeros of J ( x )  
are larger than m. Asymptotic properties of higher zeros can be obtained as follows. From 
(9.3.3) and (9.3.19) we have 

cos [m (tan q - q) - ~ / 4 ]  

(-42) 
sin2q . 

Jk(m secq) = - - 

The sth zero of J,(x) occurs for a value of q given by 

m(tanq - q) - H/4= S H  - H/2 (A3) 

and its value is z,, = m secq. At each zero, the sine in equation (A2) is &l, and therefore 

where q is given by equation (A3). The explicit value of q can be obtained by iterating 
q = tan-' [q + n (s - 0.25)/m], which converges very rapidly. 

H = m A(tanq - q) = m tan' IJ Aq. 

Consecutive zeros (for given m) satisfy 

(A5) 

The justification of the last step is that Aq is a very small number, since m is large. 
Therefore consecutive values of zms satisfy 

It follows that for any s, large or small, the denominator of C,, in equation (9) is 

a remarkably simple formula which is crucial in our work. 
Although we expected these formulae to be correct only to order m-', we found that 

they are excellent approximations even for J l ( x ) .  For example, we obtain 211 = 3.7944 
versus the correct value 3.8317. For larger s the agreement is even better. 
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